ARE ANALYTIC STATEMENTS NECESSARILY A PRIORI?

James Cain

In Naming and Necessity\(^1\) Saul Kripke develops an account of a prioricity and analyticity of statements which, though initially plausible, turns out to be untenable. To see why this is so, let us turn to the relevant features of the Naming and Necessity account. We find (at least) two sorts of conditions mentioned under which we can recognize a statement as being known a priori. One of these deals directly with analyticity.

... let’s just make it a matter of stipulation that an analytic statement is, in some sense, true by virtue of its meaning and true in all possible worlds by virtue of its meaning. Then something which is analytically true will be both necessary and a priori. (That’s sort of stipulative.) [p. 39]

We cannot take Kripke to be saying that all analytic statements are in fact known a priori. I think the following principle captures the intent of the claim that what is analytic is a priori:

(P1) Any statement we understand which is analytically true and which we can see to be true in all possible worlds in virtue of its meaning is known to us a priori.

I think the following two principles should also be acceptable to anyone holding (P1):

(P2) If we understand an argument and see that it is valid in virtue of its meaning, then we grasp the validity of the argument a priori.

(P3) If we have a priori knowledge of the premises as well as an a priori grasp of the validity of a given argument and we accept the conclusion as therefore holding, then we have a priori knowledge of the conclusion.

A second sort of condition under which Kripke thinks we can recognize a statement as being a priori is illustrated in the following passage. Here Kripke is considering a case in which a person introduces the term ‘one metre’ by the stipulation that one metre is to be the length of stick \(S \) at time \(t_0 \).

What then, is the epistemological status of the statement ‘Stick \(S \) is one metre long at \(t_0 \)’, for someone who has fixed the metric system by reference

\(^1\) S. A. Kripke, Naming and Necessity (Cambridge, MA: Harvard University Press, 1980).
to stick S? It would seem that he knows it a priori. For if he used stick
S to fix the reference of the term 'one metre', then as a result of this
kind of 'definition' (which is not an abbreviative or synonymous definition),
he knows automatically, without further investigation, that S is one metre
long. [p. 56]

What we need to notice here is that if the reasoning in this passage is
correct then it will apply to a wide range of cases. For instance, suppose
I introduce the operator \ast as follows:

Let \ast be the one-place truth-functional operator whose meaning is negation
if no seven foot tall bachelor has existed prior to time t (this moment),
and let it be the operator that leaves the truth value fixed otherwise.

Given this introduction of \ast, I will know without further investigation (of
an empirical nature) the following statement (in which 'A' abbreviates the
analytic statement 'If a seven foot tall bachelor has existed, then an unmarried
man has existed'):

(1) If $\ast A$ is true, then a seven foot tall bachelor has existed

for the antecedent could only be true if \ast is the operator that leaves the
truth value fixed, in which case, by the stipulation, a seven foot tall bachelor
has existed. But then, according to Kripke's way of looking at things, (1)
will be known by me a priori.

As a matter of fact, a seven foot tall bachelor existed prior to t. Thus
\ast is the operator that leaves the truth value fixed, and therefore the following
is analytic:

(2) $\ast A$

Furthermore, I understand (2) and see how its truth in all possible worlds
follows from its meaning. Therefore, by (P1), I know (2) a priori. Furthermore,
given my understanding of quotation marks and the term 'true', I see that
the following argument is valid:

$\ast A$

Thus, $\ast A$ is true.

Thus, by (P2), I grasp the validity of this argument a priori. Thus by (P3)
I know the following statement a priori.

(3) $\ast A$ is true

Using (P2) again, I have an a priori grasp of the following argument:

(1) If $\ast A$ is true, then a seven foot tall bachelor has existed;
(3) $\ast A$ is true.

Thus, (4) a seven foot tall bachelor has existed.

Here we run into the absurdity that, by (P3), I can come to have a priori
knowledge of (4). But of course (4) is paradigmatic of the sorts of things
that cannot be known a priori.
We thus see that something has gone wrong in Kripke’s account (at least when it is supplemented with (P2) and (P3)). I am inclined to think that this example shows us a breakdown in (P1), for given my way of introducing the term “*” I must discover the meaning of “*” a posteriori (the most natural way being by determining whether a seven foot tall bachelor existed prior to t), and it is at this point that the empirical information conveyed by (4) sneaks in.

The initial plausibility of (P1) may arise from the following mistaken picture (though I do not want to claim that this picture of things is found in Naming and Necessity). We directly confer meanings on words. We may then reflect on the interrelationships of these meanings. If we find that a statement is true in virtue of such relationships, then we know a priori that the statement is true. The flaw in this picture is that we do not in general directly confer meanings on the words of a statement we are considering. Words usually come to us already having a meaning, a meaning we may have to discover (or may already have discovered) empirically. In the example above, I conferred a meaning on “*” indirectly, through a reference to whether or not a seven foot tall bachelor had existed. To discover the meaning so conferred, empirical investigation was needed. Because we do not always have a priori access to the meaning of words, we run into counterexamples to (P1).

A possible misunderstanding of the “*” example deserves explicit attention here. It might be thought that (2) is not analytic, for “*” does not simply mean the truth function that leaves the truth value fixed, but rather, for any statement B, “*B” means ‘B iff a seven foot tall bachelor existed prior to t’. That was not the way the example went, however. On the intended reading:

(5) It is possible that *no seven foot tall bachelor existed prior to t
expresses a truth, for it will be equivalent to:

(6) It is possible that no seven foot tall bachelor existed prior to t
which is true. But on the reading which treats “*B” as equivalent to ‘B iff a seven foot tall bachelor existed prior to t’, (5) would come out false, since what follows the ‘it is possible that’ is contradictory.

More subtly, it might be suggested that what “*B” means is rather ‘B iff in the actual world a seven foot tall bachelor existed prior to t’. As with the previous reading, this is a perfectly possible thing for “*” to mean, but it does not reflect what happens in the example. There “*” is introduced in such a way that only those with appropriate background information will understand its meaning (not everyone will understand a roundabout meaning). We can imagine a custom of introducing terms in this way to keep an enemy from understanding our code. The people using the code do not forget what the words mean if they forget the original stipulations used in introducing the words. (I do not forget the meaning of “*” if I forget the connection between “*” and bachelors, so long as I retain my grasp of
the truth-functional character of "*". In fact, it might even be useful in such a case to have stipulations that are easily forgotten, so that it would be more difficult to break the code and discover the meanings of the words.

University of Cincinnati
Received May 1990
Revised August 1990

2 This reply to the objection is inspired by remarks made in a lecture by Kripke in a different context.

3 I wish to thank an anonymous referee for the Australasian Journal of Philosophy for his or her extensive comments on an earlier draft.